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Abstract
Motion in a circle troubled Newton and his contemporaries and troubles
students today. This article attempts to give a clear presentation of certain
aspects, particularly centripetal acceleration and centrifugal force.

A difficult concept
The founders of classical mechanics in the
seventeenth century had considerable difficulty
with motion in a circle. The great Dutch physicist
Christiaan Huygens (1629–1695) was the first
to work out the correct dynamical laws for a
body moving uniformly in a circle. However,
he thought that the force acting on the moving
body was directed away from the centre of
motion, and coined the term ‘centrifugal’ force
to describe it [1]. Isaac Newton (1642–1727)
was unclear on this point until, in 1684, assisted
by Robert Hooke (1635–1702), he coined the
expression ‘centripetal’ force and begins to speak
unambiguously of a centripetal force acting on
each planet and directed inwards towards the Sun
[2]. Huygens’ mistaken version of the concept of
centrifugal force continues in use outside physics
to this day, despite efforts to banish it by very
distinguished physicists, such as Alexis Clairaut
(1713–1765) and Heinrich Hertz (1857–1894) [3].

It may, indeed, seem counter-intuitive
that a body moving uniformly in a circle
should somehow be accelerating towards the
centre. Richard Westfall, pre-eminent historian of
Newtonian physics, describes this insight as ‘the
supreme act of imagination in the construction of
modern dynamics’ [4]. If centripetal acceleration
is so difficult to grasp, can we avoid teaching
it—and the non-existence of Huygens’ centrifugal
force—as brute facts that our students must
uncomprehendingly accept, or can we build up
their conceptual resources step by step so that these

ideas almost seem like common sense? I believe
so.

I have chosen a very introductory—almost
remedial—level of presentation, intended for
those A-level and foundation students who may
not all be mathematically proficient. The emphasis
will be on interpretation and explanation because it
is here, I believe, that difficulties chiefly lie in this
topic, as in so many others in physics. Of course,
there are many correct ways—and unlimited
numbers of unhelpful ways—of teaching motion
in a circle or anything else. The structure, the pace,
the use of computer animations and other visual
aids, worked examples in class and coursework
will, of course, depend on the background of the
students. Where I have found that an aspect of
this topic is generally well treated in textbooks, I
have barely touched upon it here. John Warren and
Tom Duncan, for example, seem to me to provide
very clear explanations of weightlessness [5], so I
do not deal with it. I have also benefited greatly
from recent pedagogical literature on mechanics
[6]. The main focus of the article is, therefore, on
aspects of the interpretation of motion in a circle
which I judge to be poorly treated in the literature,
or entirely absent.

As every physics teacher knows, to teach the
kinematics and dynamics of motion in a circle
requires a knowledge on the part of the class
of the geometry of the circle, angular velocity
and its relationship to tangential velocity, an
elementary knowledge of vector graphics [7], quite
a sophisticated understanding of acceleration, and

0031-9120/01/050399+07$30.00 © 2001 IOP Publishing Ltd P H Y S I C S E D U C A T I O N 399



J Roche

a knowledge of Newton’s laws of motion and his
law of gravity. I have encountered difficulties of
understanding in each of these areas—both on my
part and on the part of my students—and I shall
deal one by one with those that are relevant.

The geometry of the circle
I introduce angular measure by asking students to
explain each of the units found on their calculators,
usually abbreviated to D R G. I ask how many
‘radians’ there are in a right angle, approximately,
and often receive no response. I then say there are
about 1 1

2 radians in a right angle, or about 6 in a
circle, and sketch a radian. It is most important that
students can imagine the radian approximately,
and not simply know it as a concept associated
with a formula. (Again and again, I encounter
students who somehow confuse the symbol 2π

with 360.) Finally, I say that the ‘grade’ divides the
right angle into 100 units, and that it was invented
during the French Revolution when all units were
being decimalized [8].

What motivated the invention of the radian?
This requires more careful explanation. I say that
6.283. . . (2π ) of them are required to sweep out a
complete circle. I ask why such an inconveniently
large unit is used, worse: one that does not even
fit into a circle a whole number of times. I then
turn to the circle and show that, if the degree is
used as an angular unit, the equation relating arc
(s), radius (r) of a circular arc and angle (θ ) has
the clumsy form s = (2π/360)rθ . If the radian
[9] is used I show that this relationship becomes
the far more convenient expression s = rθ . It is a
considerable problem for some students to know
when to use degrees and when to use radians. In
the theory of motion in a circle angles are always
measured in radians.

I usually introduce angular velocity in terms
of the orbit of the Moon around the Earth. I
define it as the angle swept out per second by
the imaginary line running from the Earth to
the Moon1. I find students generally have little
difficulty with the derivation of the formula v =
ωr once they know s = rθ . It is also important to
derive for them the period formulas, T = 2πr/v

and T = 2π/ω. The latter they find rather abstract
but it can be made more intuitive by pointing out
that if ω radians are swept out in one second,

1 About 2.5 microradian per second.

1 radian will be swept out in 1/ω seconds, and
2π radians will be swept out in 2π/ω seconds,
which is just T , the period of revolution.

Defining acceleration
I find that students often have a very unclear
understanding of the concept of acceleration in its
full generality. I do not believe it is helpful to
launch it immediately with a measuring definition
and even less so with a mathematical formula, nor
is it particularly helpful at this point simply to say,
generally, that a body is accelerating if its velocity
is changing in magnitude or direction. When I ask
students how acceleration is measured I usually
get the reply ‘metres per second squared’. When
I ask them what they mean by ‘second squared’
the class usually falls silent. In fact, as I have
attempted to show elsewhere, ‘second squared’
has no meaning and this notation is the result of
an incoherent merging of Fourier’s dimensional
analysis with Gauss’s quantity calculus in the late
nineteenth century [10].

I have found that the most successful
explanatory definition of acceleration is the
‘addition of velocity to a body’ since this applies
to all kinds of acceleration and is rigorous. (This
is the definition used by Galileo: see [11].) I
also state that the direction of acceleration is the
direction in which velocity is being added. The
class will already be familiar with the straight
line acceleration of a car. This works them into
a concrete mode of thinking. I then ask how
the acceleration of a car is measured. Primed
by the earlier definition I may get the answer
‘velocity added per second’. I then apply this to
free fall under gravity and persuade them to tell
me that a velocity of about 10 metres per second
is added every second to a falling body. After
1 second this gives 10 metres per second, it adds
up to 20 metres per second after 2 seconds, and
so on. Clearly, the measuring definition of the
acceleration of gravity is 10 metres per second
added every second, or 10 metres per second, per
second, for short. I discourage them from writing
10 metres per second squared and, instead, ask
them to write 10 m/s/s [12]. Once this concept
is clearly expressed more accurate values can be
introduced.

The example of a projectile helps the class to
understand that velocity can be added to a body
in a direction that is perpendicular to the actual
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velocity of the body, or indeed in any direction
whatever. This means, of course, that acceleration
can be in any direction, irrespective of the present
direction of velocity. A vector graph or animation
showing velocities added during the motion of the
projectile is essential here. At this stage I find
that students appear able to grasp the directional
independence of velocity and acceleration without
too much difficulty.

Explaining centripetal acceleration
Consider the Moon M (figure 1(a)), travelling for
a moment parallel to the tangent to its orbit. If
velocity were not being added to the Moon in an
inwards direction, it would continue moving off
inertially along its tangent. If just the right total
amount of velocity, in the right direction, is added
in each short period of time, the Moon will end
up after each such period having the same velocity
magnitude as before, but it will be travelling along
the tangent to the orbit in its new position. The
angle in the diagram is greatly exaggerated to help
visualize the explanation.

It may be difficult for beginners to grasp that
adding a velocity can mean that the body ends
up with the same velocity magnitude as before,
and a velocity vector construction (known as a
hodograph) helps to make this clear (figure 1(b)).
The figure can be used to show that the added

Figure 1. (a) Adding velocity to the Moon. The
direction in which velocity is being added, δv, is the
mean direction of acceleration. The angle θ is greatly
exaggerated for convenience. (b) The hodograph
(velocity vector diagram) of (a).

velocity is so directed that it reduces the velocity
a little in the tangential direction, but increases
it in a perpendicular direction, by just the right
amounts so that the resultant velocity has the same
magnitude as before—and is turned through the
appropriate angle.

Since velocity is being added to the body, it
is accelerating. Acceleration in a technical sense
may not, therefore, mean an actual increase in
speed. It is best to point out to the class here
that some of them may experience a conflict with
their pre-scientific understanding of acceleration,
which might lead them to assume that whenever
a body accelerates its speed must increase.
However, all that is required scientifically for
acceleration is that velocity is being added—
whether or not it results in an increase, decrease
or no change in speed is unimportant. In this case
velocity is being added in a direction that always
points towards the centre of the circle. This means
that the acceleration is centripetal—towards the
centre.

Bodies do not accelerate spontaneously. If a
body is accelerating there must be another body or
agency exerting a force upon it. For a stone whirled
around by a string the body directly acting on the
stone is the string, and the force is the tension of
the string pulling the stone inwards. For a planet
orbiting the Sun it is the gravitational field of the
Sun, acting directly on the planet, that causes it
to accelerate centripetally towards the Sun. The
Sun does not make the planet move, but it does
impress a circular form on the existing motion
of the planet2. Without the attraction of the Sun
the planet would fly off at a tangent, following its
natural inertial motion.

I find it very important not to tell the students
at this point that a centripetal acceleration is caused
by a ‘centripetal force’ because they will surely
come to believe that centripetal force is a new
kind of force along with gravity, contact forces
and electromagnetic forces. Furthermore, they
may even think of centripetal force as something
abstract, and not link in their minds to any agency
which exerts it. There is, of course, no such
special category of force as ‘centripetal force’. I
state that any force which truly causes centripetal

2 Although the Moon and many planets have nearly circular
orbits, all planetary orbits are, of course, more precisely
described as elliptical. In such orbits the Sun does modify
the actual speed of the planet, in a periodic manner.

P H Y S I C S E D U C A T I O N 401



J Roche

acceleration in a moving body must be able to
follow the latter around (as a string does), or
otherwise act centripetally upon it at every point of
its path. Almost any familiar dynamic agency can
exert a force in such a centripetal manner. I also try
to talk about this force in a concrete way, such as
‘a tension acting centripetally’ or ‘a gravitational
force acting centripetally’. Some of these points
are well made in several, but not in all, textbooks
[13].

Students may not yet be entirely satisfied.
If the Moon is being pulled by the Earth’s
gravitational field, if it is continually accelerating
towards the Earth, why does it not actually strike
the Earth? This is an excellent question to put
to the class. If they answer vaguely this is
because a rather new concept is involved. If the
Moon were instantaneously at rest with respect
to the Earth then it would, indeed, fall towards
the Earth a distance of about 17.5 km in one
hour. Conversely, if there were no gravity, the
tangential inertial motion of the Moon would carry
it away laterally (not radially: see figure 2) from
the Earth a distance of about 17.5 km in one hour.
The combined effects of tangential inertial motion
and gravity force the path of the Moon into the
arc of a circle—which follows the curvature of
the Earth’s surface—and maintains it at the same
radial distance from the Earth as it moves3.

Centrifugal force
Teachers may groan to see yet another discussion
of this troubled subject, but I believe it is a
touchstone of conceptual difficulty in mechanics.
I have identified at least three interpretations of
centrifugal force in the literature: a valid meaning
in physics, an entirely different but equally valid
meaning in engineering, and a cluster of false
meanings. I will consider some of the false
meanings first. One writer on a respectable
website states that ‘When [centrifugal force] does
exist, it is due to the acceleration of the mass
of an object’ [15]. In reality, of course, force
causes acceleration (with mass as the control)
and not the other way around. Here, perhaps,
we have a confused application of D’Alembert’s

3 In fact, since Newton, it has been often assumed in physics
that gravitational acceleration is a rapid series of sudden, small,
discrete additions of velocity. Between each of these sudden
additions the Moon will continue its tangential inertial motion
[14].

Figure 2. The hypothetical lateral displacement of the
Moon from the Earth. Gravity, in the absence of lunar
tangential motion, would cause the Moon to fall
towards the Earth about 17.5 km in one hour.
Tangential inertial motion, in the absence of gravity,
would cause the Moon to move laterally away from the
Earth 17.5 km in one hour. The combined effects of
gravity and inertial motion force the path of the Moon
into a circular arc—following the curvature of the
Earth’s surface—and it keeps the same radial distance
from the Earth.

principle, which states that the negative of mass
times acceleration is equal to the fictitious force
required to bring the system to equilibrium [16].
D’Alembert’s principle can be very perplexing,
and is no longer found in undergraduate textbooks.

A recent engineering mathematics textbook
states that ‘The centripetal force. . . [and]. . . the
centrifugal force. . . are in equilibrium at each
instant of the motion’ [17]. We might be forgiven
for thinking that this is what theologians call the
invincible blindness that can only be rectified by
prayer. Unfortunately, this view is widespread.
For example, many students are likely to have
absorbed uncritically the statement that the Earth’s
attraction on the Moon is balanced by a centrifugal
force. The standard physics response to this is to
point out that if the force of gravity on the Moon
were balanced, then according to Newton’s second
law there would be no lunar acceleration, since
there would be no resultant force, and the Moon
would fly off at a tangent. So there must be an
unbalanced centripetal force acting on the Moon
to maintain the circular form of its orbit. This
explanation tacitly implies an inertial perspective,
but students appear to adopt that naturally. Indeed,
it can confuse them here to talk about inertial
frameworks.

I add the following point. If there is a
centrifugal force on the Moon then it must be
caused by some body acting outwards on the
Moon, since all forces are caused by bodies: forces
are not abstract entities. Of course, no body or
other agency can be identified to cause the claimed
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lunar ‘centrifugal force’ (either in an inertial or in
a revolving framework) [18].

Well, ‘what about the centrifuge’, some may
object? I point out that the heavier particles in
the centrifuge fly off to the sides more or less
tangentially, rather than centrifugally, because the
differential liquid pressure cannot provide enough
centripetal force to maintain them in a circular path
in the centrifuge. The motion of these particles is
largely a tangential motion, therefore, and not a
radial outwards motion, and there is no ‘centrifugal
force’ pushing them out.

There is, however, a valid concept of
centrifugal force in physics. If the observer
in a frame of reference rotating with the Earth
pretends for mathematical convenience that it
is an inertial frame, then it becomes necessary
to postulate a fictitious outwards force on a
geostationary satellite to explain why it does not
plunge to Earth. This is the centrifugal force
of physics, an entirely fictional force [19]. It
has now virtually disappeared from school and
undergraduate physics textbooks because it can
be highly confusing. Indeed, it is not uncommon
even for physics authors to confuse the language
of inertial and rotating frameworks.

But we must leave the final word to
the engineers. The stresses that develop in
rapidly rotating turbine blades are thought of by
mechanical engineers as being due to centrifugal
forces [20]. To take a simple example, an
object whirled on an elastic string pulls the string
outwards, creating the tension in the string. Both
the inertial centrifugal force acting on the string
and the elastic centripetal force acting on the
moving body are reaction forces—they call each
other into existence. Centrifugal and centripetal
force are equal and opposite here but do not
balance because they act on different bodies
(figure 3).

In a rotating turbine, for example, each outer
section of the blade exerts an outwards pull on the
portion between it and the shaft, while at the same
time the latter exerts an elastic inwards pull on the
former. It is the stresses in the blades and their
causes that mainly interest engineers, rather than
the centripetal forces. It follows that both elastic
centripetal forces and inertial centrifugal forces
act in a rotating solid body [21]. What makes
centrifugal force rather difficult to grasp here is
that it is an inertial reaction, and such forces are
not easy to visualize.

Figure 3. Centripetal force on a body M, and
centrifugal force on a string S, in a gravity-free
environment. FS is the elastic centripetal force exerted
by the string S on the mass M, and FM is the
centrifugal inertial reaction of the mass M on the string
S. Although equal and opposite, these forces do not
balance, because they act on different bodies.

Interestingly, the above considerations do not
apply to many situations that concern physicists.
When the gravitational field of the Earth applies a
centripetal force to the Moon, for example, the
Moon does not react centrifugally on the field.
There is no direct reaction on a field, whether it is
gravitational, electric or magnetic [22]. The Moon
does, of course, act gravitationally on the Earth.
True centrifugal force exists only as a reaction to
macroscopic contact or binding forces.

A physics teacher might agree with this but
disagree that there should be any encouragement
whatever for centrifugal force in a physics class.
It is difficult enough to put across the concept of
centripetal force, and banish the misuse of the
concept of centrifugal force. Furthermore, the
centrifugal force of physics is confusing, and the
centrifugal force of engineering applies only in
special situations. These arguments would only
allow ‘bad’ centrifugal force in again by the back
door, and result in total incomprehension.

I agree fully that the fictional centrifugal
force of physics should not even be mentioned.
However, if the bulk of the class intend to go
into engineering surely it would help them to
have the engineering concept of centrifugal force
explained clearly in their physics class beforehand.
Indeed, there does seem to be some kind of
unhelpful conflict, with respect to this topic,
between physicists and engineers. It must be
admitted, nevertheless, that this subject is subtle
and the least confusing strategy for most physics
groups may be to teach them centripetal force only,
and leave centrifugal force to the engineers.

P H Y S I C S E D U C A T I O N 403



J Roche

Calculating the centripetal acceleration
I will conclude with the derivation of an expression
for centripetal acceleration. My goal here is to
provide the simplest and most intuitive proof. The
following version is standard, but not perhaps the
nuances, so I will give it in full.

In figure 1(b) δv is the small velocity added
during the short time δt . The mean acceleration in
magnitude, therefore, is given by

a = δv/δt

where δv is the scalar magnitude of the vector
δv. A scalar derivation is easier for beginners.
(Later, this can be generalized to a = dv/dt .)
The direction of acceleration is, of course, that of
δv, the added velocity.

Since all three velocity scales are equal on
the diagram, the numbers measuring velocity in
each case can equally well be interpreted as
numbers measuring the lengths of the sides of
the isosceles triangle MAB. For the second part
of the proof, therefore, we will think of the
numbers representing v, v and δv simply as ad
hoc numerical measures of the lengths of the sides.
This sudden transition to a purely geometrical
interpretation here of δv and the two v’s needs
to be pointed out, otherwise the explanatory jump
may perplex many students.

If AB is very small it can be regarded to a good
approximation as representing the magnitude of
the circular arc AB linking the radii MA and MB.
It follows that

AB = MA δθ

or, in terms of their ad hoc measures,

δv = vδθ.

δθ in figure 1(b) should be measured in radians.
Now we switch back to a kinematic interpretation
of δv and v. From its measuring definition, the
acceleration

a = δv/δt = vδθ/δt = vω.

This is perfectly accurate only when δθ is
idealized to an infinitesimal size4. It does not
4 Infinitesimals are still commonly used in physics as interim
idealizations or useful fictions which immediately lead on to
the formal sense of derivatives [23].

really make sense to say that this equation ‘is’
the centripetal acceleration. Like all equations
in physics it represents a relationship between
distinct physical quantities, for example between
lunar centripetal acceleration and the quantities
upon which it depends—tangential velocity and
angular velocity.

Since v = ωr , there are two other versions of
this equation,

a = v2/r and a = ω2r.

The version to choose depends, of course, on the
problem in hand, and it should be selected to
simplify the calculations as much as possible.
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