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Abstract
The direction assigned to the magnetic field today derives historically from
magnetic navigation. The author argues that this is a null direction and that
the true action of the magnetic field occurs in a plane perpendicular to the
conventional direction. This has been recognized in physics since Ampère, but
the momentum of tradition and the mathematical convenience of established
conventions and notation appears to have prevented its widespread acceptance.

1. The mathematical structure of the magnetic field: vector or tensor?

The direction of the magnetic field today remains that which William Gilbert (1544–1603) and
magnetic navigation have assigned to it, and the field is still widely thought to possess a positive
power of orienting a compass needle in this direction [1]. The discovery of electromagnetism
in 1820, and the gradual shift of attention to the magnetic forces produced by, and acting
on, electric currents, introduced certain ambiguities to the concept of the direction of the
magnetic field. André Marie Ampère (1775–1836), in his seminal study of electrodynamics
in 1823, found that a plane of electrodynamic action could be identified at any point in the
neighbourhood of a closed current-bearing circuit. When a current element lies in this plane
it experiences a force directed along the plane and perpendicular to the element, whatever the
orientation of the latter. This plane was perpendicular to the conventional direction of the
magnetic intensity. Ampère called it the ‘directive plane’ [2]. He also introduced a quantity
perpendicular to this plane, which has the direction of the conventional intensity, and which
he called the ‘directrix’. The magnetic intensity in the nineteenth century was generally
represented by Ampere’s ‘directrix’ function, rather than by his ‘directive plane’.

Mathematical investigations in the latter part of the 19th century began to reveal that the
magnetic intensity has curious structural features. Hermann von Helmholtz (1821–1894) in
1858 drew attention to the close mathematical analogy between vortex motion and the magnetic
intensity of an electric current [3]. Emil Wiechert (1861–1928) in 1899 may have been the first
to recognize that Ampère’s directrix, or magnetic intensity vector, remains unaltered under a
coordinate inversion and, therefore, has the mathematical properties of a rotation. He describes
it as a rotation vector or ‘rotor’ [4]. Arnold Sommerfeld (1868–1951) in 1910 distinguished
between the terms ‘polar’ vector and ‘axial’ vector in electromagnetism and states that the
magnetic intensity is an axial vector [5].
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Ampère’s ‘directive plane’ began to receive more mathematical attention in the early
twentieth century. The bringing together of axial vector theory, anti-symmetric tensor theory
and planar dyadic theory [6] led Sommerfeld in 1910 to the recognition that the magnetic
intensity is not a vector but an anti-symmetric tensor of second rank, and that it is a ‘. . . planar
magnitude (plangrössen)’. The plane in which this tensor acts is, of course, Ampère’s ‘directive
plane’. Sommerfeld states that he will retain the customary notation Hx , Hy and Hz for the
magnetic intensity, but that Hyz, Hzx and Hxy would be more correct [7]. Hermann Weyl
(1885–1955), in 1918, criticized the axial vector representation of the magnetic field quite
strongly [8]:

‘It may be justifiable on the grounds of economy of expression to replace skew-
symmetrical tensors by vectors in ordinary vector analysis, but in some ways it
hides the essential feature; it gives rise to the well-known “swimming rules” in
electrodynamics, which in no wise signify that there is a unique direction of twist in
the space in which electrodynamic events occur; they become necessary only because
the magnetic intensity of field is regarded as a vector, whereas it is, in reality, a skew-
symmetric tensor (like the so-called vectorial product of two vectors). If we had been
given one more space-dimension, this could never have occurred.’
During the same period Albert Einstein (1879–1955) made similar criticisms of the axial

vector representation of the magnetic intensity [9]. Although Einstein went on to sketch a
theory of three-dimensional electromagnetism in index notation, in which the electric field is
treated as a polar vector and the magnetic field as an anti-symmetric tensor, this approach has
never become widespread [10]. Elementary presentations continue to find it convenient to treat
the magnetic field as an axial vector [11], while advanced treatments combine the electric and
magnetic fields into a single anti-symmetric four-dimensional tensor. Sommerfeld’s magnetic
tensor does appear there—as a component of the four-tensor [12].

The systematic development of the approach initiated by Sommerfeld and Einstein throws
interesting light on the nature of magnetism. It also distinguishes sharply between the structure
of the electric and magnetic fields, a distinction that is sometimes overlooked.

2. The plane of action of the magnetic field

What are the grounds for maintaining that the magnetic field is more appropriately represented
by an anti-symmetric tensor rather than by a vector? Consider Maxwell’s differential version
of the law of Faraday and Neumann:

∇ × E = −∂B

∂t
. (1)

The electric field strength E, which changes sign under an inversion of coordinate axes, is
termed a polar vector. However, the components of ∇ × E do not change sign under such an
inversion, and it is termed an axial vector. It follows that the components of B do not change
sign either, under a coordinate inversion, revealing that B, also, is an axial vector.

The curl of E identifies a structure in the electric field which is equivalent to a vortex or
circulation in the field, and which defines a plane perpendicular to the conventional direction
of ∇ × E1. It is more accurate to represent such a vortex by a planar antisymmetric tensor
than by a vector. This can be demonstrated as follows. If its planar structure is made explicit
by writing |∇ × E|xy instead of |∇ × E|z and running the suffixes through all possibilities,
then

|∇ × E|αβ = ∂Eβ

∂xα

− ∂Eα

∂xβ

. (2)

1 If n�s represents a circular area vector with its normal n parallel to ∇ × E, then
∫
�s

∇ × E. n ds = ∫
c
E · dl,

from Stokes’ theorem, where ds is an element of the area �s and dl is a vector element of its periphery. If this is
non-zero it means that E has a mean component around the periphery of the loop and has, therefore, a vorticity in the
plane of �s. For a rigorous treatment see [13].
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Nine sets of values result, three of which are zero and three of which are the negatives of
the remaining three. It can easily be shown that this quantity transforms as a second-rank
tensor [14]. Although it contains more terms than ∇ × E, it is a better physical description
of the vorticity because it directly represents its plane and sense of rotation. For an axial
vector, the sense of circulation is a pure convention that has to be read into the notation.
For an antisymmetric planar tensor, however, the sense of circulation is a straightforward
interpretation of its alternative signs. Equation (1) implies that B also is best represented
mathematically as a planar tensor:

Bαβ =
∣∣∣∣∣
B11 B12 B13
B21 B22 B23
B31 B32 B33

∣∣∣∣∣ =
∣∣∣∣∣

0 Bz −By

−Bz 0 Bx

By −Bx 0

∣∣∣∣∣ =
∣∣∣∣∣

0 Bxy −Bzx

−Byz 0 Byz

Bzx −Byz 0

∣∣∣∣∣ (3)

where α = 1, 2, 3 and β = 1, 2, 3. Bαβ is obviously anti-symmetric since Bαβ = −Bβα .
If B is properly a tensor why is it possible to represent it as an axial vector? In three-

dimensional space an axial vector happens to represent the same geometrical information as
a skew-symmetric tensor, since both define an axis of rotation, a corresponding family of
parallel planes, an orientation in each plane and are isomorphic to one another [15]2. In higher
or lower dimensional spaces this isomorphism breaks down3. In a four-dimensional space,
for example, |∇ × E|αβ would have six independent components while an axial vector would
only have four, and could not represent the hypervorticity. The possibility of representing the
vorticity of the electric field—and the intensity of the magnetic field—by a vector is, therefore,
an accident of three-dimensional space.

It is well known, of course, that other quantities in physics that are commonly represented
by axial vectors, such as torque, angular velocity and angular momentum, represent actions
taking place around an axis, not along the axis. Indeed, they represent physical processes taking
place in planes perpendicular to the axis and are more appropriately represented physically
by antisymmetric tensors (Feynman et al [11, vol 1] and [16]). Does the magnetic field also
represent a physical processes taking place in a plane perpendicular to an axis, and does it have
a sense of twist in that plane? For further illumination let us now turn to experiment.

As is well known, experiment reveals that that the direction of the force exerted by the
magnetic field on a moving charge q is perpendicular to B. Clearly, the direction assigned to
the magnetic field is not the direction in which the field acts on a moving charge. By contrast,
the direction given to the electric field is, of course, the direction of action of that field. All
of this is expressed by the Lorentz force law, F = q(E + v × B). Again, when a magnetic
field acts on a current element, whatever the inclination or orientation of the element at a given
point, the force invariably acts in a locally fixed plane—Ampère’s directive plane—which is
perpendicular to the conventional direction of the magnetic field (figure 1). When a current
element lies in this plane it experiences a force along the plane and perpendicular to the element,
which, in scalar magnitude, is independent of the orientation of the element. At any point,
therefore, the propensity of the magnetic field to act does not have a fixed direction, it has a
fixed plane of action (somewhat like surface tension) and it can act equally in any direction in
its plane. For that reason, if it acts in the xy plane only, for example, it is most conveniently
represented, in scalar notation, by Bxy .

The magnetic field also has an orientation in its plane of action. A free charge moving in
the local plane of action will orbit clockwise or anticlockwise, depending on the local sense
of B and the sign of the charge (figure 2). If a positive charge orbits clockwise, the sense of
the field in relation to the observer will be conventionally called positive. This is not the usual
convention but it is demanded by the left-handedness of Fleming’s rule, and by the adoption
of the right-handed grip or screw rule to define positive rotations. The fact that B has a sense
of rotation or twist is also revealed by the change in sign of B under time reversal.

2 For a proof of isomorphism see footnote 6 later.
3 In an n-dimensional space antisymmetric tensors will have (n2 − n)/2 independent components since there will
be n2 terms, less n zero-valued diagonal terms, and each of the remaining terms appears twice—with opposite signs.
Vectors, however, will have only n independent components, and n = (n2 − n)/2 only when n = 3.
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xy

Figure 1. The force on a current element that is inclined to the directive plane of the magnetic
field. The force always lies in the plane of action of the field. When the element is perpendicular
to the field the force is zero. The contours represent lines of equal magnetic field strength.

xy

Figure 2. The path of a charged particle in a magnetic field. The path is a clockwise circle if the
particle is positive and moving in the plane of action of a uniform positive field. It will be a helix
if the velocity is inclined to this plane. The field is positive when the magnetic force δF bears 90◦
clockwise from the current element δI.

After much consideration I have decided to represent or key the sense of the magnetic
plane by the direction of the force on a current element, with a given orientation, lying in the
plane of action of the field. This can easily be extended to any other orientation and the key
can readily be slid in thought across the plane of action. The sense of the magnetic field is
positive if a clockwise rotation of the current element through a right angle in the plane of the
field gives the direction of the force acting upon it.

When a magnetic needle lies with its axis in the plane of action it experiences maximum
torque, with the magnitude of the torque independent of its orientation in the plane. This
torque reduces to zero when the needle axis is perpendicular to the magnetic plane of force.
Clearly, the magnetic field moves, or tends to move, a magnetic needle out of its plane of action.
Therefore, the conventional direction of the magnetic field is a null direction of magnetic force
and represents the normal to the plane of action of the field. The magnetic field consists,
therefore, not of lines of force but of a family of planes of force perpendicular to these lines
(figure 3). The tensor representation of the magnetic field models all of these actions explicitly4.

4 For a permanent magnet, the external magnetic surfaces are, of course, identical with the external scalar equipotential
surfaces, since both sets of surfaces are perpendicular to the conventional field direction.
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Figure 3. Magnetic surfaces surrounding a circular current-bearing coil. The surfaces are
everywhere perpendicular to the conventional magnetic field direction. They are similar to the
surfaces of the Earth’s magnetic field. The keys give the sense of the field. They can be moved
around a surface and rotated to give the sense in other positions.

3. Choosing a representation for the magnetic field tensor

Tensors in physics are usually defined rather abstractly in terms of their transformational
properties rather than in terms of their physical properties. It could be said that many tensors,
like vectors, are directed quantities, but, unlike vectors, cannot be defined in terms of a single
direction: they are multi-directional in some sense, and there is a great variety of such senses.
Surface tension is a tensor of this kind: within its surface it can act in any direction, the
direction in any concrete case being determined by the edge offered to the liquid surface. It
always acts in its local plane and in a direction perpendicular to any edge in that plane, just
like the magnetic field tensor.

The magnetic field is a second-rank anti-symmetric tensor acting in planes in three-
dimensional Cartesian space. Rather than index notation I have chosen bivectors5 to represent
it because they express particularly clearly the plane of action of the magnetic field, and make
many of the basic equations of electromagnetism easier to interpret. The calculus of exterior
forms and Clifford algebras may also, of course, be used in more advanced representations of
electromagnetism (Frankel [11] and [17]). I shall use SI units throughout this article.

5 I would like to acknowledge my debt to Professor Eoghan McKenna, of fond memory, of University College Galway,
who introduced me to tensor calculus using vector notation in the late 1950s.
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The magnetic field strength B may be represented using tensor products of unit vectors,
as follows [18]6:

B = Bxy(ij − ji) + Byz(jk − kj) + Bzx(ki − ik). (4)

Here B, the scalar magnitude of B, is the magnitude of the force acting in the plane of B
and perpendicular to a unit current element placed with any orientation in that plane. Bxy ,
Byz and Bzx represent the scalar components of B in the reference planes. From axial vector
theory

B = (B2
xy + B2

yz + B2
zx)

1/2. (5)

The direction cosines between the normal to B and the coordinate axes are given by

lx = Byz/B ly = Bzx/B lz = Bxy/B.

The axial vector equivalent to B is 7

B = iByz + jBzx + kBxy or B = iBx + jBy + kBz. (6)

Of course, just as torque can be represented by an axial vector and yet thought of as a
process lying in a plane, so too the magnetic field can be thought of as a process lying in a
plane and yet be represented by an axial vector, or even by a scalar. A particular physical
interpretation need not be tied to a particular mathematical representation.

The dot or inner product of B with a vector (as a postfactor) rotates the component of the
vector in the plane of B clockwise through 90◦, if B is positive. The component of the vector
perpendicular to the plane of B is eliminated. For example,

B · B = 0

confirming that the plane of the magnetic tensor is perpendicular to the conventional direction
of the field.

It is now common to write alternating or ‘outer’ products of two vectors as

ab − ba = a ∧ b. (7)

This is sometimes called the ‘wedge’ product of a and b [19]. The ‘wedge’ symbol ∧ should
not be confused with the symbol for the vector product, although here it has the same magnitude
as the latter—since |a ∧ b| = |ab − ba| = ab sin � ab, where � ab is the acute angle between
a and b. The plane of a ∧ b (or of ab − ba) is, of course, perpendicular to the axis of a × b.
Unless a ∧ b is interpreted as a property in the plane specified by the vectors a and b it may
seem a piece of abstract formalism. In this notation

B = Bxy(i ∧ j) + Byz(j ∧ k) + Bzx(k ∧ i). (8)

Each of the unit bivectors (i ∧ j), (j ∧ k) and (k ∧ i) represents a plane, and a unit rotational
operator in that plane, since its dot product with a coplanar vector rotates the latter in this plane
clockwise, without change of scale or dimensionality, through 90◦. Here unit bivectors have
an analogous role to that of unit vectors in polar vector theory.

6 In formal mathematical terms the tensor product of two vectors is a bilinear, real valued function defined on vectors
such that ij (a, b) = (i ∗ a)(j ∗ b) where ‘∗’ is the ordinary dot product. The contraction of a bivector with a vector
is just the vector obtained when the first slot of the bilinear function is used: ij (a, ) = (i ∗ a)j .
7 B is clearly invariant under an inversion of axes, since replacing i, j,k by −i, −j, −k does not alter B. It
is plain also that B is antisymmetric since its conjugate Bc = Bxy(ji − ij) + Byz(kj − jk) + Bzx(ik − ki) =
−B. We can transform from B to B and vice versa using the relations B = E · B and B = 1

2 B:E, where
E = (ijk + jki + kij − ikj − kji − jik) = i ∧ j ∧ k. In index notation, Bjk = ejklBl and Bi = 1

2 eijkBjk , where
eijk = ±1 if i, j , k are even or odd permutations of 1, 2, 3, respectively, and eijk = 0 if any two of i, j , k are the same.
I am grateful to Geoff Brooker for a very helpful discussion of the relationships between index and dyadic notation in
magnetism.
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The outer curl or vorticity of the polar vector E is the planar tensor

∇ ∧ E = ∇E − (∇E)c = (i ∧ j)

(
∂Ey

∂x
− ∂Ex

∂y

)
+ (j ∧ k)

(
∂Ez

∂y
− ∂Ey

∂z

)

+(k ∧ i)

(
∂Ex

∂z
− ∂Ez

∂x

)
. (9)

If A represents the vector potential then

B = ∇ ∧ A. (10)

4. Applications to electrodynamics

The basic relations of electrodynamics are represented in this notation as follows8.
The force on a current element Iδl is related to the tensor field B by

F = IB · δl. (11)

This indicates that the force F is in the plane of B and perpendicular to δl (figure 1). Similarly
(figure 2), the force on a moving charge in a magnetic field is expressed by

F = qB · v. (12)

Also, the Lorentz force law on a charge q in a combined electric and magnetic field becomes

F = q(E + B · v). (13)

The magnetic field strength at P is related to its source element I1δl1 (figure 4) by

δB = µ0

4π
I1

(
δl1r − rδl1

r3

)
= µ0

4π
I1

(
δl1 ∧ r

r3

)
(14)

where r is the position vector of P with respect to the element. Similarly, the force on a second
current element I2δl2 at P is

δF = δB · (I2δl2) = µ0

4π
I1I2

(
δl1r − rδl1

r3

)
· δl2 = µ0

4π
I1I2

(
δl1 ∧ r

r3

)
· δl2. (15)

I find this more intuitive physically than

δF = µ0

4π
I1I2δl2 ×

(
δl1 × r

r3

)

because the former expressly reveals that the force on the second current element lies in the
plane defined by the first current element, and r, and is perpendicular to δl2. I have always
found the cross-product expression here difficult to visualize.

Maxwell’s magnetic vorticity equation becomes a divergence equation in this notation.
Indeed, ∇ × B is a polar vector and not a vorticity:

∇ · B = µ0j +
1

c2

∂E

∂t
. (16)

When ∂E/∂t = 0,

∇ · B = µ0j.

∇ · B represents a true divergence of the planar magnetic field, as can be seen from figure 5.
This shows that an electric current gives rise to a divergence of the magnetic field, just as an

8 Some of the relations that follow are already well-known in other notations: see Einstein A 1967 The Meaning of
Relativity (London: Methuen) p 21–2, 38–40 (1922 1st German edn) and Frankel T 1997 The Geometry of Physics: an
Introduction (Cambridge: Cambridge University Press) p 119. Here they are partly based on the identity a×T = T·a,
for any vector a, where T is the axial vector corresponding to the anti-symmetric tensor T.
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1
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xy

2

12

1

Figure 4. The magnetic plane of force of a current element. Note that δl1, r, δB and δF12 all lie
in the same plane.

Figure 5. Magnetic planes of force diverging from a long straight current-bearing conductor.

electric charge gives rise to a divergence of the electric field. Since the normals to the magnetic
field never diverge (∇ · B = 0, always)

∂Byz

∂x
+

∂Bzx

∂y
+

∂Bxy

∂z
= 0

or, in full,

∂Bαβ

∂xγ

+
∂Bβγ

∂xα

+
∂Bγα

∂xβ

= 0. (17)

This means that the surfaces of action of the magnetic field never close—unlike the lines of
action of the electric field.
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y z

Figure 6. A plane sinusoidal radiation field in free space. Note that E and B lie in the same plane,
the plane of polarization. The vector potential also lies in that plane.

From this perspective, what is commonly termed the circulation of the magnetic field
becomes a measure of its divergence and might be termed the sweep of the field around the
current. Similarly, the flux ϕ of the field is a flux of the normals to the field. Without suggesting
that a change of nomenclature is required, a more accurate descriptive term for ϕ here might
be the cover of the field.

In the present notation Maxwell’s electric vorticity equation takes the form

∇ ∧ E = −∂B

∂t
. (18)

This analysis suggests that Maxwell’s time-dependent equations are structurally dissimilar, in
that the first is a polar vector equation and the second a bivector equation. Furthermore, (17)
is a third-rank tensor equation. Maxwell’s equations therefore lose much of their comparative
symmetry in this notation, suggesting that the degree of symmetry present in the axial vector
representation of these equations was only apparent.

The electric and magnetic radiation field strengths are related by the expression

B = 1

c
(nE − En) = 1

c
(n ∧ E) (19)

where n is the unit normal to the wavefront. This reveals that E and B lie in the same plane,
which, for a plane wave, is the plane of polarization (figure 6). Also,

∇2B = 1

c2

∂2B

∂t2
(20)

which shows that B travels as a tensor wave.

5. Magnetic ‘swimming rules’

It is possible to see certain pedagogical advantages in this perspective on the magnetic field.
What Weyl amusingly terms the ‘swimming rules’ (Fleming’s left- and right-hand rules) would
no longer be needed. Also, when one becomes thoroughly familiar with this approach, certain
phenomena become easier to visualize. Figure 7 represents the magnetic forces on a circular
current bearing coil placed in the magnetic field near one end of a bar magnet. By simply
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Figure 7. Forces on a circular current-bearing coil in a curved magnetic field due to a bar magnet.
The resultant force on the coil will be along its axis.

inspecting the diagram we can immediately tell the line of action of the force on the coil. The
key provided in the diagram gives the sense of this force.

If the objection is made that the direction of the magnetic field is much easier to visualize
in the conventional representation, it is important to consider whether this apparent simplicity
is bought at too high a price: do we not pay for it in the complexity of the finger and wrist
manoeuvres required to translate it into force directions on currents, and into the field directions
of currents? And do we find it much easier only because we are more used to it?

The same figure can be used to illustrate motional electromagnetic induction in the vicinity
of the magnet. Suppose a vertical wire moves transversely to its own length, and parallel to the
local surface of magnetic action. The field will interpret this motion as the horizontal convection
of conduction charges along its surface. It will exert a magnetic force perpendicular to this
motion, along the wire, and this acts as a Lorentz electromotive force in the wire. Using the
key we can find the direction of this force. An advantage of this approach is that it reduces the
problem of determining directions from three dimensions to two.

In elementary approaches throughout physics, vector products of polar vectors are
generally treated as axial vectors rather than anti-symmetric tensors because of the
mathematical convenience of doing so. This practice tends to obscure the planar character
of these products. I believe that the plane of action of the magnetic field should be pointed out
to physics undergraduates. Very few will know, intuitively, that the conventional direction of
the field is the direction of its axis, only, because its axial nature is more hidden, and is not
often represented as a vector product.

I believe that much remains to be learned about the implications of this approach. These
are not simply a matter of mathematics, primarily they relate to physical interpretation.
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