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Abstract
Momentum is commonly defined as ‘mass times velocity’. However, this
cannot be a general definition, since it does not include other types of
momentum, including macroscopic radiation momentum or the momentum
of a photon. Rankine coined a general definition for energy. Is it possible to
describe a corresponding definition of momentum?

‘There is a part of everything which is unexplored . . . Even in the
smallest thing there is something in it which is unknown. We must
find it’. Gustav Flaubert (1821–1880) quoted by Guy de Maupassant
(1850–1893) [144].

1. Introduction

Today, the term ‘momentum’ is universally recognized as an authentic and useful concept,
and its common definition is ‘mass times velocity’. In certain cases, however, this definition
does not apply. It does not apply to relativistic mechanical momentum ( p = γ mv), to
radiation momentum

(
g = 1

c2µo
B · E

)
, to the effective momentum of a stationary charge in

the neighbourhood of a current or magnet (p = qA), nor to the photon momentum (p = hk).
In fact, in no case is ‘mass times velocity’ a rigorous definition of momentum.

Sometimes in physics, to move forwards, it is helpful to look backwards. Carrying out
a critical analysis of all of significant primary sources of a particular topic, in chronological
order, and in the hands of an experienced physicist, applies a richer resource to tackling
unsolved problems. It can also give an enhanced role to neglected concepts, and it can refresh
older definitions. I attempt to apply this method to the concept of momentum. It also leads to
an examination of the concept of force, of Newton’s second law, of the ‘force of inertia’ and
of the concept of impulse. I believe that each of these concepts also needs renewal.

2. Impetus and impact

Since the 17th century different vernaculars have used different terms for momentum, including
‘impetus’, ‘momentum’, ‘quantity of motion’ and ‘impulse’. This reflects uncertainty in this
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concept. Since the Middle Ages the mathematical definition of momentum has remained
stable, but the physical interpretation of momentum has varied greatly. Because of this, it will
be necessary to examine momentum in some detail.

The remote ancestor of the concept of momentum was John Philoponus of Alexandria
(sixth century) [1]. Aristotle (384–322 BC), eight centuries earlier, argued that the rush of
air, which accompanies a projectile at its beginning, continues to sustain it in motion [2].
Philoponus describes Aristotle’s theory as ‘fantastic’, arguing that even if [3]

countless machines . . . set a large quantity of air in motion behind these bodies . . . the
projectile will not be moved . . . a single cubit.

Philoponus saw that the air resists, rather than sustains, the motion of an arrow or missile. So
what drives a freely moving projectile? For Philoponus, ‘some incorporeal motive force is
imparted by the projector to the projectile’. That is, a non-material internal force now drives it.
Once motion begins, therefore, ‘there will be no need of any agency external to the projector’
to move the projectile along. This internal force ‘will be produced much more readily in a
void than in a plenum’ [4].

Simplicius (b. 500, d. after 533), a contemporary of Philoponus, dismissed his persisting
force as an example of ‘Egyptian mythology’ [5]. But this did not kill the concept. In
fact, Philoponus’ internal force had a long and distinguished history within Islamic [6] and
European physics.

In the European Middle Ages this internal force was called ‘impetus’. Jean Buridan (about
1295–1358) of Paris raised impetus theory to a high level of interpretative and quantitative
sophistication:

The impetus imparted to the . . . projectile varies . . . as the velocity . . . and as the
quantity of matter of the body . . . .

Buridan used ‘impetus’ to mean the force which first initiates movement, but also the
(supposed) force which maintains its motion. As a body falls, the accumulated impetus
grows. He also uses impetus to explain the constant orbital motion of the heavenly bodies [7].
Key elements of the theory of impetus survive in the modern theory of momentum.

Impetus theory deeply influenced seventeenth and eighteenth century mechanics [8].
Galileo (1564–1642), in his Two New Sciences of 1638, accepts a version of impetus theory
close to that of Buridan [9]. Galileo, however, helps to create a more modern term by frequently
making ‘impetus’ synonymous with ‘momentum’ [10]:

. . . the impetus or momentum of the moveable . . .

However, Galileo’s term ‘momentum’ has a meaning quite different from that intended today.
Galileo’s quantification of impetus was similar to that of Buridan [11], but he added a unit of
impetus [12]:

. . . the speed acquired by one-pound ball starting from rest and falling from a height
of one pikestaff is always and everywhere the same, and for that reason it is well
suited to stand from the impetus deriving from natural descent.

Galileo makes impetus responsible for impact [13]:

[W]hen the pole yields to the impetus of the pile driver, four inches the first time, and
two [inches] the second . . . these impacts come out unequal . . . .

He is also interested in the forces acting during the process of impact, but he does not
study this in any depth [14].

Johannes Kepler (1571–1630) in 1618 first introduced the concept of ‘inertia’ as a
spontaneous tendency in each body to come to rest [15]. For Kepler, the Earth because
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of its ‘natural inertia . . . abhors motion’ [16]. Indeed, he believed that a persisting impetus,
within a uniformly rotating body, is needed to maintain its motion against its natural rotational
inertia [17]. Kepler’s inertia made explicit what had been assumed implicitly for a thousand
years in the theory of impetus.

Contrary to Kepler, Galileo argues powerfully that, in the horizontal, every body is
‘indifferent to motion and rest’ [18]. However, both he and most of his successors maintained
a residual belief that a persisting impetus drives freely moving bodies along uniformly [19].

René Descartes (1596–1650) published his Principia philosophia (1644), six years after
Galileo’s Two New Sciences. Descartes, analogously with Galileo, argues that motion is
relative, and that ‘the transference [of] movement and rest . . . is reciprocal’. But he also writes
of ‘the force of a body in motion’, an expression equivalent to ‘impetus’ [20].

Descartes discovered that, when a moving body collides with an equally free body at
rest, and they continue to move together, the speed of the combined body is halved, but the
product of quantity of matter and speed remains the same [21]. He generalized this product,
and defined it as the ‘quantity of motion’. For Descartes, God ‘conserves’ the total ‘quantity
of motion’ in the Universe [22]. Reflecting on this he argued that [23]

When a stone falls to earth, . . . if it stops and does not bounce, I think that this is
because it moves the earth, and so transfers its motion to it.

‘Quantity of motion’ was not a force, and was effectively a kinetic concept, because matter,
for Descartes, is pure extension. Nevertheless, ‘quantity of motion’ is not abstract speed,
but matter in a state of motion [24]. In the eighteenth century it became synonymous with
‘momentum’.

Although he rejected Kepler’s inertia, Descartes introduced a new kind of inertia in 1639,
based upon his concept of ‘quantity of motion’ [25]:

. . . if two unequal bodies receive as much motion from another, this similar quantity
of motion does not give so much velocity to the bigger one as to the smaller one. It
can be said, in this sense, that the more matter the body contains, the more natural
inertia it possesses.

As we shall see, this is equivalent to the most common meaning of inertia today—controlling
inertia.

In his Principia, Descartes studied the impact on two free bodies in detail [26]. We now
recognize that many of Descartes rules of collision are false, and the role of direction in his
law of conservation of quantity of motion required clarification [27]. Others reformed these
later in the century [28]. However, the creation of the concept of ‘quantity of motion’, the
discovery of a new conservation law, the creation of a new quantitative theory of impact, the
introduction of the new concept of controlling inertia, makes Descartes a central figure in this
investigation.

In 1668–1669 John Wallis (1616–1703) [29], Christopher Wren (1632–1723) [30] and
Christian Huygens (1629–95) [31] greatly improved the Cartesian theory of impact. They
showed that ‘quantity of motion’ is a directed quantity, that speed and direction are equally
important in calculating impact, that the directed quantity of motion always remains constant
before and after impact [32], that the phenomena of impact are independent of relative motion,
and that the centre of gravity remains constant during collisions. However, imperfectly elastic
bodies were not well treated [33].

Wallis identifies ‘quantity of motion’, ‘impetus’ and ‘momentum’. He also describes
‘momentum’ as ‘impelling force’, and as the agent of impact [34]. Wallis represented
momentum algebraically for the first time,

V = PC
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where V is momentum, P ( pondus) is weight (in this context it is close to ‘quantity of matter’)
and C is celeritas (speed) [35].

3. Force and ‘the quantity of motion’ (momentum) [36]

From Antiquity the primary model of force was contact force, including forces supported by or
moved by machines. Originally, the concept of ‘force’ implied unnatural or violent action, as
distinct from natural motion, and ‘force’ was contrasted with the ‘load’ acted upon. However,
during the seventeenth century the concept of force became much more general [37]. Galileo
first introduced the formal study of tensile forces [38]. Huygens in 1659 apparently first
introduced the tension in a string as a general model and measure of force [39]. Robert Hooke
(1635–1702) in 1678 first introduced a spring calibrated against weight [40].

The ancient theory of machines hardly distinguished statics and dynamics, since the
machine in static equilibrium, and the machine moving uniformly, obeyed the same basic laws
[41]. However, Aristotle worked out a more general theory of forces acting on uniformly
moving resistive loads [42]. John Wallis, in 1670, helped to clarify the distinction between
active forces and impedimenta, that is, non-reversible forces such as friction [43]. To this
day, the study of static forces, and moving forces acting on constrained bodies, is far more
important in engineering and everyday life than forces acting on free accelerating bodies.

Contact force or ‘pressure’ is the primary model of force for Isaac Newton (1642–1727)
[44]. Newton in his Principia of 1687 applies his concept of ‘pressure’ to static forces
(the pressure of a fluid) [45], to uniformly moving bodies (to moving loads) [46], and to
accelerating bodies [47], but also to percussion. He attempts to apply a similar model to
gravitational force [48]. He coins various special definitions of force, including ‘motive
force’ (which accelerates bodies) and ‘centripetal force’. These definitions explicitly combine
description and measurement [49].

For Newton, ‘pressure’ or ‘impressed force’ is not a property, or an object, but an action:
‘ . . . force is the action exerted on a body . . . ’ [50]. More specifically, a force is always a
dynamic interaction—of the source body on the target body.

It was an extraordinary leap of imagination for Newton to recognize that a force, acting
on a freely moving body, ‘does not remain in a body once the action has ceased’. For Newton,
there is no persisting impetus acting on a freely moving body. He agrees with Descartes that
motion and rest are reciprocal. He also states that ‘every body is only with difficulty put out
of its . . . state either of being at rest or moving uniformly’ [51]. This is Newton’s first law,
known today as the law of inertia.

Even more extraordinary, given the traditional theory of mechanical forces acting against
impediments, Newton recognizes that a constant ‘motive force’ acting on a free body
continually changes its motion. In his second law, Newton quantifies this concept by stating
that ‘a change of motion is proportional to the motive force impressed . . . ’1 [52]. This remains
the fundamental form of Newton’s second law. The term ‘motion’ of course has the same
mathematical meaning as ‘momentum’. Contrary to Wallis, Newton never uses the term
‘momentum’ (implying an internal force). Instead, he substitutes the Cartesian kinematic
‘quantity of motion’, or simply ‘motion’.

The second law, in the form ‘force equals mass times acceleration’ first appears in early
nineteenth century [53]. Indeed, Newton does not have an explicit numerical measure or
symbol for acceleration. He measures the ‘acceleration of motion’ as ‘proportional to the
velocity which it generates in a given time’ [54]. This means that the derived form of

1 From subsequent applications it is clear that Newton implies equal times in this proportion.
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his law relates force, quantity of matter, velocity and time [55]. The formal verification of
Newton’s second law was provided by the machine invented by George Atwood (1745–1807) in
1784 [56].

The standard way of measuring force by Newton was by comparing the test force with
a standard force—often the dead weight of a solid or liquid, or by means of known elastic
tensions [57]. Also, having established his second law, Newton frequently used ‘the change
in motion’ or the ‘acceleration’ as a proportional measure of ‘motive force’ [58]. Yet another
proportional measure of force was through his law of gravity [59].

Having banished persisting impetus, how does a free uniformly moving body, containing
no force, act as a force at the moment of impact? To deal with this, Newton argues that there is
an ‘inherent force’ in bodies, which he calls ‘the force of inertia’. ‘[A] body exerts this force
only during a change in its state’; that is, when the state of rest, or uniform motion, is disturbed
[60]. The ‘force of inertia’ is a temporary forward force, induced in the arresting body, which
acts on the target (and not on itself). Simultaneously, the target generates an equal inertial
reaction [61]. However, it took another 60 years for physics to replace persisting impetus, as
the cause of impact, with Newton’s ‘force of inertia’.

Newton introduced the first quantitative study of inelastic collisions [62]. He combines
his third law with his ‘force of inertia’ to prove that equal and opposite changes occur to the
quantities of motion during a collision [63]. He also thereby provides the foundation of the
principle of conservation of momentum. But he does not state it explicitly, because it was then
strongly associated with Descartes’ scalar version of that principle [64]. In fact, the explicit
acceptance of the general principle conservation of momentum may have been as late as
1872 [65].

Newton invested more effort in the study of gravity than in that of any other force [66]. He
established the inverse square law of force between planets, and, qualitatively, he generalized
terrestrial gravity to the whole universe [67]. He identifies the total ‘motive force’ of gravity
with ‘its weight, and it may also be known from the force opposite and equal to it’ [68].

Recognizing that gravity generates the same local acceleration for all bodies irrespective of
mass [69], Newton introduced a new agency directly responsible for gravitational acceleration,
‘accelerative force’,

a certain efficacy diffused from the centre through each of the surrounding places in
order to move the bodies that are in those places.

For Newton, and for his successors, ‘accelerative force’ is always measured indirectly by
gravitational acceleration. Also, the ‘motive force’ of gravity is ‘the sum of actions of the
accelerative force on the individual particles of the body’. This meant that ‘accelerative force’
is equal to the force of gravity on unit mass [70]. Newton also introduced ‘accelerative force’
into contact mechanics, which again meant the force density [71]. ‘Accelerative force’ soon
became the most powerful concept in celestial dynamics. James Clerk Maxwell (1831–1879),
in 1865, renamed it the ‘intensity’ of the ‘gravitational field’ [72].

Despite his immense achievements in mechanics, Newton did not include the role of
work, the generation of kinetic energy, and impulse.

4. The controversy over momentum and vis viva (kinetic energy)

Despite the efforts by Newton to demonstrate that no persisting force is required to maintain
free motion, ‘the force of a moving body’ remained deeply tenacious. For example, John
Desaguliers (1683–1744), in 1734, writes that [73]
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[By] momentum or quantity of motion . . . I don’t mean the . . . Pressure,
Traction . . . but the Force which it has all the while it is moving from one place
to another.

Gottfried Leibniz (1646–1716) in 1686 attempted to introduce ‘living force’ (vis viva) in place
of ‘momentum’, or the Cartesian ‘force of a moving body’. ‘Living force’ (like impetus) is a
force that persists, even in a free moving body [74]. It cannot be measured directly, but ‘by the
violent effect it can produce’—particularly by its ‘power’ to raise the moving body to a given
height against gravity, and vice versa [75]. Also, ‘living force’ can be ‘consumed’ through the
compression of a spring during its arrest [76]. Leibniz also proved that this ‘power’ is jointly
proportional to the mass and to the square of the original speed [77]. Famously, he argued for
the conservation of living force, even maintaining that, during impact, ‘living force’ is ‘carried
over into the elasticity of bodies’ [78].

While criticising the Cartesians, Leibniz considerably clarified their concept of impetus
and quantity of motion. He stated that ‘impetus is always combined with living force’—the
first statement of today’s recognition that momentum and kinetic energy are always combined
in a moving body [79]. He also recognized that an impressed impetus (contact force) acting
on the free body, for a certain time, generates ‘quantity of motion’ [80]. However, Leibniz
denied that the ‘quantity of motion’ is a dynamic agency. He also denied that Cartesian (or
scalar) ‘quantity of motion’ is conserved [81].

The debate generated an enormous controversy for more than 60 years [82]. The
Cartesians had their strongest case with dead impact equilibrium, in which the mass is inversely
proportional to the speed. ‘Living force’, which was held to be responsible for such collisions,
did not predict the correct impact law in this case [83].

With hindsight, the time was not yet ripe to resolve the mixture of obscure and undeveloped
concepts involved [84]. Nevertheless, many important secondary issues were clarified in the
1740s. One was the clarification of the concept of force. ‘The force of a moving body’ was
rejected, mainly by Jean D’Alembert (1717–1783) and Leonhard Euler (1707–1783), as being
obscure and metaphysical [85]. They also emphasized that Newton’s ‘force of inertia’—a
tensile contact force which occurred only during accelerations—is the agent of collisions,
rather than the hypothetical persisting ‘impetus’ [86].

Further, d’Alembert and Euler undermined the whole debate [87] by showing that, during
an arresting impact (sometimes modelled by compressing a spring [88]), a contact force F
is exerted for a certain distance ds, but also for a certain time dt. Mathematically, this was
represented by the simultaneous equations 1

2 mv2 = ∫
F dx [89] and mv = ∫

F dt [90]. This
meant that both parties were wrong (with respect to a persisting impetus) and right (with
respect to the mathematics of impact). The upshot of these criticisms was that momentum
(represented by mv) and vis viva (proportional to mv2) effectively disappeared as physical
concepts for more than a century. They did not disappear, however, as mathematical concepts.
As late as 1855 the reduced status of momentum is illustrated by Arthur Morin (1813–1884)
[91]:

The products mv have received the name ‘quantity of movement’; it is a convenient
expression upon which one does not attach any sense other that the product of mass
times velocity.

5. Lagrange and the revival of the concept of momentum

Joseph Louis Lagrange (1736–1813), in his magisterial Mécanique analytique, argued in 1788
that [92]
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[T]he quantity of movement of a body is the measure of that force which the body is
capable of exercising against an obstacle, and which is called the percussion.

Lagrange closely follows Newton’s analysis of inertial impact [93]. He states that

the product of the mass and the velocity expresses the ‘finite force’ of a body in
movement.

By ‘finite force’, he means—implied in his mathematics—the inertial force acting during the
short time of arrest [94].

Lagrange’s description of momentum, as the capability of a moving body to deliver an
arresting percussion or ‘impulsion’ [95], is a remarkable reconciliation of Galileo’s dynamic
concept of momentum with Descartes’ (and Newton’s) more kinematic concept. It is well
known by physicists to this day. Although the conventional definition of momentum remains
mass times velocity, the modern working understanding of momentum in physics began to
grow with Lagrange [96].

Jean Belanger (1790–1874) selected Lagrange’s term ‘impulsion’ rather than ‘percussion’.
This is presumably because ‘percussion’ ambiguously included both the vector and scalar
aspects of impact. He defined ‘impulsion’ mathematically as

∫ t

0 F dt . For collisions,
Belanger’s impulsion is, of course, Newton’s ‘force of inertia’ F acting for a certain time
t [97]. Belanger, of the École Polytechique, was inspired by the great engineering physics
tradition of that school, especially by the creation of the concept of ‘work’ by Jean Poncelet
(1788–1867) and Gaspard Coriolis (1792–1843) [98]. In 1868 Maxwell combined Lagrange
and Belanger’s definitions [99]:

The impulse of a force is equal to the momentum produced by it.

Even if a collision does not bring a body to rest, the change in momentum measures the
impulse. Also, impulse can be quantified in principle by comparing arbitrary with standard
impacts—without measuring force and time. The concept of impulse was introduced into
textbooks in the late nineteenth century [100].

William Rankine (1820–1872) in 1855 combines the interpretation and measurement of
the term ‘energy’ as follows [101]:

The term ‘energy’ comprehends every state of a substance which constitutes the
capacity for performing work. Quantities of energy are measured by the quantities
of work which they constitute the means of performing.

William Thomson (1824–1907) in 1867 interpreted 1
2 mv2 physically as ‘kinetic energy’—the

capacity of a moving body to perform work during arrest [102]. This meant that, after more
than a century of in which 1

2 mv2 was largely interpreted as an useful function, kinetic energy
returned to a full physical meaning.

As a working concept in physics, nineteenth century ‘momentum’ also returned to physical
status, but textbook definitions remained unexamined. When Rankine coined his definition of
energy there was a felt need to generalize the various kinds of energy. But in his day there
was only one kind of momentum—mechanical momentum. Perhaps, when new concepts of
momentum eventually appeared, the great creative period of defining new dynamical concepts
had passed—for the present.

New concepts of momentum did begin to emerge from the late nineteenth century. John
Poynting (1852–1914) recognized radiation momentum in 1884 [103], and in 1904, James J
Thomson (1856–1940) discovered that even a stationary charge has an implicit momentum
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near a current [104]. In 1906 Max Planck (1858–1947) recognized that mechanical momentum
should be expressed relativistically as follows [105],

mẋ√
1 − q2

c2

,
mẏ√
1 − q2

c2

,
mż√

1 − q2

c2

,

where q is the particle speed.
Albert Einstein (1879–1955) discovered in 1909 that ‘quantized’ light has a momentum

hf

c
[106]. Momentum soon became of crucial importance in the analysis of atomic and nuclear

collisions [107].
Physics textbooks today point to the analogy between mechanical momentum generating

impulse and kinetic energy producing work [108]. But what is still missing is a general
definition of momentum in terms of impulse, in analogy with the established general definition
of energy in terms of work.

However, to generalize momentum we must first examine the concept of inertia after
Newton.

6. The concept of inertia separates into three

Newtonian inertia has two aspects. His first law, or the inertial state, is a naturally occurring
stable state of rest, or of uniform motion, when no external forces act on the body, and when
no spontaneous ruptures occur within the body. The conservation of the inertial state is similar
to the conservation of momentum, but the latter is more general. We also recognize that the
concept of an inertial framework is based on this law. Newton’s second law, when applied to
F = dp

dt
= 0, is not, in general, an example of the inertial state. For example, doing work at

constant speed against resistance is not compatible with that state.
A body loses its inertial state if it is disturbed. If this occurs by collision with another

macroscopic body, Newton’s force of inertia immediately comes in to play. If the original
inertial state was a velocity, the force of inertia is a ‘forward’ tensile force, acting by contact
against the disturbing body. The momentum resources this force, and is opposite to the rate
of change of its momentum. The same body also experiences a reversed differential stress,
decelerating each layer of the body. When a contact force is applied to a free body at rest,
it becomes loaded with ‘a force of inertia’—a resisting stress, correlated with acceleration
[109]. This is, of course, a real force. Fictional inertial forces require a separate study [110].

Euler introduced a third concept of inertia. In a publication of 1710 Leibniz had included
a study of Descartes ‘natural inertia’. Newton was also aware of it, but did not incorporate
it explicitly into his mechanics [111]. Euler, between 1736–1765 distinguished between
Newton’s ‘force of inertia’ and what Euler called the ‘quantity of inertia’ [112]. For Euler,
‘quantity of inertia’ is not measured by the ‘force of inertia’, but by the ratio of the applied
force to the resulting acceleration. Some of Euler’s formulations of ‘quantity of inertia’ are
almost identical with Descartes’ ‘natural inertia’ [113].

At first, Euler argued that quantity of inertia is proportional to quantity of matter,
but soon he identifies ‘quantity of matter’ and ‘quantity of inertia’ [114]. Heinrich Hertz
(1857–1894) recognized some perplexity in the nineteenth century about these various
concepts of inertia [115].

Max Abraham (1875–1922) in 1902 and Hendrik Lorentz (1853–1928) in 1904, went
further, and demonstrated that Euler’s ‘quantity of inertia’ (or controlling inertia) is a tensor
[116]. Newton’s ‘inertial force’, is, of course, a vector. ‘Controlling inertia’ adjusts the
acceleration—even of a microscopic charge in an electric field. However, the ‘force of inertia’
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does not seem to apply on that scale, and so seems less fundamental [117]. In today’s physics,
controlling inertia is the most common meaning of ‘inertia’.

The result of this long development is that inertia has now three aspects: ‘the law of
inertia’, the ‘force of inertia’ and Cartesian or controlling inertia.

7. Upgrading the definition of momentum

We are now in a position to attempt a general definition of momentum. The Lagrangian
definition of momentum was, of course, applied to classical mechanics. But does it apply to
special relativity, to the various forms of macroscopic electromagnetic momentum, and to the
photon?

The momentum of a body will be defined as the capability to generate an impulse as it
stops. Radiation impulses act during absorption.

The impulse J of the moving body on the target will be, applying the relativistic form of
Newton’s second law [118], and F is the forward force of inertia:

J =
∫ t

0
F dt = −

∫ t

0
γ 3ma dt

= −
∫ 0

v

γ 3m dv

= −
∫ 0

v

d(γmv)

= γmv.

Ideally, the target body should be infinite in mass and, therefore, after impact it, and the target,
should move with an infinitesimal velocity. Alternatively, the test body should encounter an
inelastic target body, with an equal and opposite momentum. In principle, therefore, relativistic
momentum may be defined experimentally, rather than analytically.

It is easy to show that Lagrange’s definition applies rigorously to the various forms of
electromagnetic momentum as follows:

• If a finite electromagnetic wave pulse is absorbed by a static plate, then the momentum
absorbed, during a short time �t, generates an impulse as follows:

F�t = �J = −
∂

[∫
1

c2µ0
B · E dV

]

∂t
�t = −∂PEM

∂t
�t = −�PEM.

Therefore [119],

J =
∫ t

0
dJ = −

∫ 0

PEM

dPEM = PEM

and the total field momentum prior to absorption is equal to the impulse generated during
absorption. F may be described as the radiative force of inertia.

• Suppose a macroscopic charge is placed at rest, and in the field of a circuit or magnet. If
the magnet is whisked away, or the circuit is quickly removed, or the current is reduced
quickly to zero, then an impulse will act on the charge as follows,

J =
∫ t

0
qE dt = −

∫ t

0
q

∂A

∂t
dt = −q

∫ 0

A

dA = qA

where A is the vector potential. The capability of the charge to generate an impulse,
before the current is removed, is equal to qA. This is an interaction momentum, rather
than a kinetic momentum [120]. In this case the vector potential, rather than the velocity,
is reduced to zero during the impulse.



1028 J Roche

• If a gas atom or molecule absorbs a photon, the photon delivers a quantum mechanical
impulse. The momentum transferred to the particle is h

λ
, where h is Planck’s constant,

and λ is the wavelength of the photon.

In vector notation [121]

p = hk = J

where k is a vector in the direction of the photon, with its magnitude equal to the number
of cycles per metre. For the latter two impulses, there appears to be nothing analogous to
Newton’s forward force of mechanical inertia.

Momentum, as the capability to generate an impulse while it reduces to zero, includes all
expressions of momentum. But what is the physical status of momentum prior to the moment
of impulse?

8. Momentum as a relative ‘capability’ to deliver a ‘finite force’

Special relativity emphasizes that momentum, and kinetic energy, are relational rather than
absolute properties. Also, according to Lagrange and Rankine, momentum and kinetic energy
are capabilities and capacities, respectively. Momentum is a directed capability, while energy
is a scalar capacity.

During an inertial impulse a body transforms its reducing momentum into a forward force,
and − dp

dt
= F. This means that momentum and kinetic energy can be measured operationally

only while they are ‘consumed’—as Leibniz puts it, that is, as
∫

F dt and
∫

F · ds, respectively.
Indeed, the implicit needs to be defined in terms of the explicit. However, momentum can be
expressed mathematically as a function of explicit properties of the uniformly moving body as
γmν. A similar analysis applies to all kinds of momentum. Momentum, therefore (like kinetic
energy), is not an explicit property (velocity), nor an analytical device (velocity potential).
Indeed, physics is rich in such implicit ‘capabilities’, ‘potentialities’ and ‘latent properties’.

Momentum is more versatile than impulse, because a given momentum controls a range
of values of F and t so as to conserve the same equivalent impulse J = Fxt. Also, the original
momentum conserves the resulting momentum. Similarly, energy is more versatile than the
work equivalent to it.

Although momentum is a propensity rather than a force, it is ‘force-like’, since it is a
capability to deliver a ‘finite force’. Also, momentum resources and directs all forms of
collisional impulse, while energy resources work.

This paper has attempted to complete the definitional work begun by Lagrange and others
on the concept of momentum. To conclude, I will examine an important tradition which
challenged Newton’s second law, and the concepts related to it.

9. Is Newton’s second law a convention?

Newton was uncertain about the source of gravity, and states that his concept of gravity is
‘purely mathematical, for I am not now considering the physical causes and sites for forces’
[122]. In particular, he was unable to measure the cause or source ‘accelerative force’, and
was always obliged to measure it indirectly, through its acceleration2. Newton’s uncertainty
about gravity created a long controversy about the definition of force in physics, which also
spread into philosophy, and continues to this day [123].

2 The measurement of the gravitational field in terms of its source was achieved by the end of the nineteenth century:
[53] pp 136–8, 160–2.
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The Irish philosopher, George Berkeley (1685–1753), from 1721 drew together Newton’s
‘purely mathematical’ interpretation of gravity, and Leibniz’s assertion that ‘living force’
cannot be known directly. Berkeley launched a powerful reductive tradition which claimed
that, not only gravity, but all forces are ‘occult’, ‘explain nothing’, are ‘only a mathematical
hypothesis’, and are ‘convenient for purposes of reasoning and computation’ [124].

Berkeley’s theory of force attracted some physicists, especially from the late nineteenth
century. Some maintained that forces can only be known through their accelerations, and
others that forces are auxiliary concepts and metaphysical [125]. This reached its highest
point in the early twentieth century [126]. This is an odd tradition since a common model of
force among physicists was the action of a compressed or stretched spring on the target body
[127]. This was clear and unhypothetical [128], and it is difficult to understand physicists who
treated force as metaphysical.

Again, it is not correct that we can know a force only by its effects [129]. In fact, the causal
side of force is much studied in engineering—which measures the conditions of the exploding
gas in an internal combustion engine, or the thrusting water in a hydroelectric turbine. The
compression in a spring—a property of the ‘cause’—allows us to measure the force, as does
the velocity and density of a wind.

In the mid-nineteenth century physics introduced its own related controversy about force.
Newton and Euler had previously introduced force generally as a ‘pressure’ that acts on a
static body, or on a moving body [130]. However, Lagrange accepts Newton’s more restricted
concept of ‘motive force’ as a new general concept of force:

One understands, in general, by the term ‘force’ or power that which impresses, or
tends to impress, movement on a body . . . .

In his gloss, by ‘tends to impress movement’ he means the action of forces in equilibrium. A
‘tendency to movement’ does, of course, exist for static forces, but they are much more than
that. The flying buttresses supporting Notre Dame are in a state of sustained pressure. They
are truly acting. Lagrange’s definition gives only a grudging recognition to static forces.

By Lagrange’s day, Newton’s ‘accelerative force’ multiplied by the target mass had
become the standard way of defining ‘motive force’ in advanced physics, for both gravitational
forces and conventional forces. Lagrange, therefore, measures all ‘accelerative forces’
indirectly, by their accelerations [131]. Lagrange gives no recognition to the direct measure of
force, for example, as measured in terms of calibrated springs. However, the pre-Lagrangian
definition of force survives [132]:

Anything which is capable of extending a spring is called a force.

Carl Friedrich Gauss (1777–1855) in 1833 introduced an absolute indirect measure of unit
accelerative force, as that ‘accelerative force which in unit time causes in [unit mass] a unit
variation in velocity’ [133]. With a different interpretation, this remains the absolute measure
of unit force.

In the mid-nineteenth century ‘accelerative force’ was abandoned and replaced by
‘acceleration’ [134]. Ernst Mach (1838–1916), in 1868, described the ‘old definition of
force as the product of mass and acceleration’. But the ‘old definition’ was, in fact, ‘mass
times accelerative force’, involving a shift by Mach from cause to effect. It is clear that Mach
literally defines force generally as ‘mass times acceleration’, since he now describes Newton’s
second law as a ‘mere identity’ [135]. This is a huge category shift in the meaning of the word
force, and of Newton’s second law.

A significant number of physicists, especially in the early twentieth century, accepted
Mach’s definition of force, and thereby generated a controversy almost as intense as the
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earlier vis viva controversy—also concerned with force! [136]. In 1957, when Max Jammer
wrote his Concepts of Force, the controversy was still apparently intense [137]. However,
textbooks since the 1930s show only faint echoes of this controversy. Nevertheless, I believe
that it remains lodged in the consciousness of many physicists, and needs to be examined
[138].

If Mach’s definition of force is taken seriously then it implies the following:

• If force is mass times acceleration, what causes the acceleration?
• Again, if force is mass times acceleration, and the acceleration is zero, does this mean that

there is no force? Static forces appear to have no coherent place in Mach’s definition of
force. In fact, Newton’s second law applies to resultant forces, only, and not necessarily
to individual forces. Indeed, Newton never claimed that a ‘change of motion’ describes
all forces.

• According to Mach, force is not an action of the source body on the target body—it is a
quantity entirely located within the target body!

Mach’s incoherence was the result of a series of small but confusing shifts, over more
than two centuries, in the meaning of the term ‘force’ in mathematical physics. It was also
motivated by a laudable but overdone attempt to reduce the auxiliary, the hypothetical and the
metaphysical, from the concepts of physics.

A similar incoherence arises when force is identified as the rate of change of momentum
[139]:

• If force is the rate of change of momentum, what generates the rate of change of
momentum?

• A physical force can act when the momentum is steadily zero (in a barometer), and also
when the momentum is steady (in terminal velocity).

• Traditional physical force is an action on the target body, but the rate of change of
momentum is a process going on within the target body itself. These are entirely
different categories. This means that, while F and dp

dt
are quantitatively equal in certain

circumstances, they are not qualitatively equal.

Mach and others describe Newton’s second law, not as a law but as a ‘mere identity’,
‘convention’ or ‘definition’ [140]. Let us suppose that this means ‘force equals mass times
acceleration’ is an identity in the sense that the term on the left is shorthand for the term on
the right [141]. However,

• the two terms cannot be identical since, as we saw, they are qualitatively different;
• when Newton’s second law is expressed in its more general form,

∑
Fn = ma (or dp

dt
),

the law cannot be an identity, since the individual terms on the left are arbitrary;
• physics already knew that force is not equal to ‘mass times acceleration’ by 1916, the

year when Mach died. In fact, F = γ 3ma, when the F and v are parallel, and F = γma
when F and v are transverse. This does not trouble indirect force measurement at low
speeds, but it entirely falsifies the claim that mass times acceleration is identical with
force.

This emphasises that the laws of physics, and in particular F = dp
dt

, are not physical
or mathematical identities. They represent relationships between qualitatively different
quantities, they are proportions or ‘analogies’ [142] and, allowing for their high accuracy,
history suggests that it would be unwise to see them as absolute. In the last analysis, such
laws are truly experimental relationships [143]. Furthermore, the ‘quantities’ of physics are
bursting with qualitative meanings.
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d’Alembert J 1796 Traité de dynamique (Paris: Fuchs) p xviii (1st edn, 1743)
Costabel P 1973 Leibniz and dynamics ed R Maddison (Paris: Hermann) p 48



1034 J Roche

Westfall R S 1971 Force in Newton’s Physics (London: Macdonald) pp 285–7
Iltis C 1971 Leibniz and viv viva controversy ISIS 62 21–35, 25

[77] Leibniz G 1956 Philosophical Letters and Letters vol 1 (2 vols), ed L E Loemker (Chicago, IL: University of
Chicago Press) pp 458–6

Clarke S 1727 The proportion of velocity and force in bodies in motion Phil. Trans. 35 381–8, 382
Dugas R 1958 Mechanics in the Seventeenth Century (Neuchatel: Éditions du Griffon) pp 466–473, 482
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[123] Newton I 1999 The Principia ed I B Cohen and A Whitman (Berkeley, CA: University of California Press)
p 392

Dugas R 1958 Mechanics in the Seventeenth Century (Neuchatel: Éditions du Griffon) pp 16–7, 549–61
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